Testing for Neutrality in Samples With Sequencing Errors

Author:

Achaz Guillaume1

Affiliation:

1. Systématique, Adaptation et Evolution (UMR 7138) and Atelier de Bioinformatique, Université Pierre et Marie Curie-Paris VI, 75005 Paris, France

Abstract

Abstract Many data sets one could use for population genetics contain artifactual sites, i.e., sequencing errors. Here, we first explore the impact of such errors on several common summary statistics, assuming that sequencing errors are mostly singletons. We thus show that in the presence of those errors, estimators of θ can be strongly biased. We further show that even with a moderate number of sequencing errors, neutrality tests based on the frequency spectrum reject neutrality. This implies that analyses of data sets with such errors will systematically lead to wrong inferences of evolutionary scenarios. To avoid to these errors, we propose two new estimators of θ that ignore singletons as well as two new tests Y and Y* that can be used to test neutrality despite sequencing errors. All in all, we show that even though singletons are ignored, these new tests show some power to detect deviations from a standard neutral model. We therefore advise the use of these new tests to strengthen conclusions in suspicious data sets.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3