Fractioned DNA Pooling: A New Cost-Effective Strategy for Fine Mapping of Quantitative Trait Loci

Author:

Korol A1,Frenkel Z1,Cohen L1,Lipkin E2,Soller M2

Affiliation:

1. Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel and

2. Department of Genetics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

Abstract

Abstract Selective DNA pooling (SDP) is a cost-effective means for an initial scan for linkage between marker and quantitative trait loci (QTL) in suitable populations. The method is based on scoring marker allele frequencies in DNA pools from the tails of the population trait distribution. Various analytical approaches have been proposed for QTL detection using data on multiple families with SDP analysis. This article presents a new experimental procedure, fractioned-pool design (FPD), aimed to increase the reliability of SDP mapping results, by “fractioning” the tails of the population distribution into independent subpools. FPD is a conceptual and structural modification of SDP that allows for the first time the use of permutation tests for QTL detection rather than relying on presumed asymptotic distributions of the test statistics. For situations of family and cross mapping design we propose a spectrum of new tools for QTL mapping in FPD that were previously possible only with individual genotyping. These include: joint analysis of multiple families and multiple markers across a chromosome, even when the marker loci are only partly shared among families; detection of families segregating (heterozygous) for the QTL; estimation of confidence intervals for the QTL position; and analysis of multiple-linked QTL. These new advantages are of special importance for pooling analysis with SNP chips. Combining SNP microarray analysis with DNA pooling can dramatically reduce the cost of screening large numbers of SNPs on large samples, making chip technology readily applicable for genomewide association mapping in humans and farm animals. This extension, however, will require additional, nontrivial, development of FPD analytical tools.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3