julius seizure, a Drosophila Mutant, Defines a Neuronal Population Underlying Epileptogenesis

Author:

Horne Meghan1,Krebushevski Kaitlyn1,Wells Amelia2,Tunio Nahel3,Jarvis Casey1,Francisco Glen1,Geiss Jane1,Recknagel Andrew1,Deitcher David L1

Affiliation:

1. Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853

2. Department of Biomedical Engineering, Cornell University, Ithaca, New York 14853

3. Weill Cornell Medicine-Qatar, Education City, Doha, Qatar

Abstract

Abstract Epilepsy is a neural disorder characterized by recurrent seizures. Bang-sensitive Drosophila represent an important model for studying epilepsy and neuronal excitability. Previous work identified the bang-sensitive gene slamdance (sda) as an allele of the aminopeptidase N gene. Here we show through extensive genetic analysis, including recombination frequency, deficiency mapping, transposon insertion complementation testing, RNA interference (RNAi), and genetic rescue that the gene responsible for the seizure sensitivity is julius seizure (jus), formerly CG14509, which encodes a novel transmembrane domain protein. We also describe more severe genetic alleles of jus. RNAi-mediated knockdown of jus revealed that it is required only in neurons and not glia, and that partial bang-sensitivity is caused by knockdown in GABAergic or cholinergic but not glutamatergic neurons. RNAi knockdown of jus at the early pupal stages leads to strong seizures in adult animals, implicating that stage as critical for epileptogenesis. A C-terminal-tagged version of Jus was generated from a fosmid genomic clone. This fosmid fusion rescued the bang-sensitive phenotype and was expressed in the optic lobes and the subesophageal and thoracic abdominal ganglia. The protein was primarily localized in axons, especially in the neck connectives, extending into the thoracic abdominal ganglion.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3