Identification of a Novel Point Mutation of Mouse Proto-Oncogene c-kit Through N-Ethyl-N-nitrosourea MutagenesisSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY536430 and AY536431.

Author:

Ruan Hai-Bin1,Zhang Nian12,Gao Xiang13

Affiliation:

1. Model Animal Research Center, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China 210089

2. Van Andel Research Institute, Grand Rapids, Michigan 49503

3. Model Organism Division, E-Institute of Shanghai Unviersity, Shanghai, China

Abstract

Abstract Manipulation of the mouse genome has emerged as an important approach for studying gene function and establishing human disease models. In this study, the mouse mutants were generated through N-ethyl-N-nitrosourea (ENU)-induced mutagenesis in C57BL/6J mice. The screening for dominant mutations yielded several mice with fur color abnormalities. One of them causes a phenotype similar to that shown by dominant-white spotting (W) allele mutants. This strain was named Wads because the homozygous mutant mice are white color, anemic, deaf, and sterile. The new mutation was mapped to 42 cM on chromosome five, where proto-oncogene c-kit resides. Sequence analysis of c-kit cDNA from Wadsm/m revealed a unique T-to-C transition mutation that resulted in Phe-to-Ser substitution at amino acid 856 within a highly conserved tyrosine kinase domain. Compared with other c-kit mutants, Wads may present a novel loss-of-function or hypomorphic mutation. In addition to the examination of adult phenotypes in hearing loss, anemia, and mast cell deficiency, we also detected some early developmental defects during germ cell differentiation in the testis and ovary of neonatal Wadsm/m mice. Therefore, the Wads mutant may serve as a new disease model of human piebaldism, anemia, deafness, sterility, and mast cell diseases.

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3