Abstract
SummaryThe cochlear nuclear complex (CN) is the starting point for all central auditory processing and comprises a suite of neuronal cell types that are highly specialized for neural coding of acoustic signals. To examine how their striking functional specializations are determined at the molecular level, we performed single-nucleus RNA sequencing of the mouse CN to molecularly define all constituent cell types and related them to morphologically- and electrophysiologically-defined neurons using Patch-seq. We reveal an expanded set of molecular cell types encompassing all previously described major types and discover new subtypes both in terms of topographic and cell-physiologic properties. Our results define a complete cell-type taxonomy in CN that reconciles anatomical position, morphological, physiological, and molecular criteria. This high-resolution account of cellular heterogeneity and specializations from the molecular to the circuit level illustrates molecular underpinnings of functional specializations and enables genetic dissection of auditory processing and hearing disorders with unprecedented specificity.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献