Is Structural Equation Modeling Advantageous for the Genetic Improvement of Multiple Traits?

Author:

Valente Bruno D1,Rosa Guilherme J M12,Gianola Daniel123,Wu Xiao-Lin3,Weigel Kent3

Affiliation:

1. Department of Animal Sciences, University of Wisconsin, Madison, Wisconsin 53706

2. Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, Wisconsin 53706

3. Department of Dairy Science, University of Wisconsin, Madison, Wisconsin 53706

Abstract

Abstract Structural equation models (SEMs) are multivariate specifications capable of conveying causal relationships among traits. Although these models offer insights into how phenotypic traits relate to each other, it is unclear whether and how they can improve multiple-trait selection. Here, we explored concepts involved in SEMs, seeking for benefits that could be brought to breeding programs, relative to the standard multitrait model (MTM) commonly used. Genetic effects pertaining to SEMs and MTMs have distinct meanings. In SEMs, they represent genetic effects acting directly on each trait, without mediation by other traits in the model; in MTMs they express overall genetic effects on each trait, equivalent to lumping together direct and indirect genetic effects discriminated by SEMs. However, in breeding programs the goal is selecting candidates that produce offspring with best phenotypes, regardless of how traits are causally associated, so overall additive genetic effects are the matter. Thus, no information is lost in standard settings by using MTM-based predictions, even if traits are indeed causally associated. Nonetheless, causal information allows predicting effects of external interventions. One may be interested in predictions for scenarios where interventions are performed, e.g., artificially defining the value of a trait, blocking causal associations, or modifying their magnitudes. We demonstrate that with information provided by SEMs, predictions for these scenarios are possible from data recorded under no interventions. Contrariwise, MTMs do not provide information for such predictions. As livestock and crop production involves interventions such as management practices, SEMs may be advantageous in many settings.

Publisher

Oxford University Press (OUP)

Subject

Genetics

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3