Multiple‐trait genomic prediction for swine meat quality traits using gut microbiome features as a correlated trait

Author:

Tiezzi Francesco1ORCID,Schwab Clint2,Shull Caleb3,Maltecca Christian14ORCID

Affiliation:

1. Department of Agriculture, Food, Environment and Forestry (DAGRI) University of Florence Florence Italy

2. AcuFast LLC Navasota Texas USA

3. The Maschhoffs LLC Carlyle Illinois USA

4. Department of Animal Science North Carolina State University Raleigh North Carolina USA

Abstract

AbstractTraits such as meat quality and composition are becoming valuable in modern pork production; however, they are difficult to include in genetic evaluations because of the high phenotyping costs. Combining genomic information with multiple‐trait indirect selection with cheaper indicator traits is an alternative for continued cost‐effective genetic improvement. Additionally, gut microbiome information is becoming more affordable to measure using targeted rRNA sequencing, and its applications in animal breeding are becoming relevant. In this paper, we investigated the usefulness of microbial information as a correlated trait in selecting meat quality in swine. This study incorporated phenotypic data encompassing marbling, colour, tenderness, loin muscle and backfat depth, along with the characterization of gut (rectal) microbiota through 16S rRNA sequencing at three distinct time points of the animal's growth curve. Genetic progress estimation and cross‐validation were employed to evaluate the utility of utilizing host genomic and gut microbiota information for selecting expensive‐to‐record traits in crossbred individuals. Initial steps involved variance components estimation using multiple‐trait models on a training dataset, where the top 25 associated operational taxonomic units (OTU) for each meat quality trait and time point were included. The second step compared the predictive ability of multiple‐trait models incorporating different numbers of OTU with single‐trait models in a validation set. Results demonstrated the advantage of including genomic information for some traits, while in some instances, gut microbial information proved advantageous, namely, for marbling and pH. The study suggests further investigation into the shared genetic architecture between microbial features and traits, considering microbial data's compositional and high‐dimensional nature. This research proposes a straightforward method to enhance swine breeding programs for improving costly‐to‐record traits like meat quality by incorporating gut microbiome information.

Funder

North Carolina State University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3