Unintended Side Effects of Transformation Are Very Rare in Cryptococcus neoformans

Author:

Friedman Ryan Z1,Gish Stacey R2,Brown Holly1,Brier Lindsey1,Howard Nicole2,Doering Tamara L2,Brent Michael R134

Affiliation:

1. Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, Missouri 63110

2. Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110

3. Department of Computer Science and Engineering, Washington University, Saint Louis, Missouri 63130

4. Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri 63110

Abstract

Abstract Received wisdom in the field of fungal biology holds that the process of editing a genome by transformation and homologous recombination is inherently mutagenic. However, that belief is based on circumstantial evidence. We provide the first direct measurement of the effects of transformation on a fungal genome by sequencing the genomes of 29 transformants and 30 untransformed controls with high coverage. Contrary to the received wisdom, our results show that transformation of DNA segments flanked by long targeting sequences, followed by homologous recombination and selection for a drug marker, is extremely safe. If a transformation deletes a gene, that may create selective pressure for a few compensatory mutations, but even when we deleted a gene, we found fewer than two point mutations per deletion strain, on average. We also tested these strains for changes in gene expression and found only a few genes that were consistently differentially expressed between the wild type and strains modified by genomic insertion of a drug resistance marker. As part of our report, we provide the assembled genome sequence of the commonly used laboratory strain Cryptococcus neoformans var. grubii strain KN99α.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3