Low Additive Genetic Variation in a Trait Under Selection in Domesticated Rice

Author:

Karavolias Nicholas G1ORCID,Greenberg Anthony J2ORCID,Barrero Luz S13ORCID,Maron Lyza G1,Shi Yuxin1,Monteverde Eliana1ORCID,Piñeros Miguel A4,McCouch Susan R1

Affiliation:

1. Section of Plant Breeding and Genetics, Cornell University, Ithaca, NY

2. Bayesic Research, Ithaca, NY

3. Colombian Corporation for Agricultural Research, Agrosavia, Colombia, and

4. Robert W. Holey Center for Agriculture and Health, USDA-ARS, Ithaca, NY

Abstract

Abstract Quantitative traits are important targets of both natural and artificial selection. The genetic architecture of these traits and its change during the adaptive process is thus of fundamental interest. The fate of the additive effects of variants underlying a trait receives particular attention because they constitute the genetic variation component that is transferred from parents to offspring and thus governs the response to selection. While estimation of this component of phenotypic variation is challenging, the increasing availability of dense molecular markers puts it within reach. Inbred plant species offer an additional advantage because phenotypes of genetically identical individuals can be measured in replicate. This makes it possible to estimate marker effects separately from the contribution of the genetic background not captured by genotyped loci. We focused on root growth in domesticated rice, Oryza sativa, under normal and aluminum (Al) stress conditions, a trait under recent selection because it correlates with survival under drought. A dense single nucleotide polymorphism (SNP) map is available for all accessions studied. Taking advantage of this map and a set of Bayesian models, we assessed additive marker effects. While total genetic variation accounted for a large proportion of phenotypic variance, marker effects contributed little information, particularly in the Al-tolerant tropical japonica population of rice. We were unable to identify any loci associated with root growth in this population. Models estimating the aggregate effects of all measured genotypes likewise produced low estimates of marker heritability and were unable to predict total genetic values accurately. Our results support the long-standing conjecture that additive genetic variation is depleted in traits under selection. We further provide evidence that this depletion is due to the prevalence of low-frequency alleles that underlie the trait.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3