Genomic selection for tolerance to aluminum toxicity in a synthetic population of upland rice

Author:

Bartholomé JérômeORCID,Ospina José Omar,Sandoval Mario,Espinosa Natalia,Arcos Jairo,Ospina Yolima,Frouin Julien,Beartschi Cédric,Ghneim Thaura,Grenier Cécile

Abstract

Over half of the world’s arable land is acidic, which constrains cereal production. In South America, different rice-growing regions (Cerrado in Brazil and Llanos in Colombia and Venezuela) are particularly affected due to high aluminum toxicity levels. For this reason, efforts have been made to breed for tolerance to aluminum toxicity using synthetic populations. The breeding program of CIAT-CIRAD is a good example of the use of recurrent selection to increase productivity for the Llanos in Colombia. In this study, we evaluated the performance of genomic prediction models to optimize the breeding scheme by hastening the development of an improved synthetic population and elite lines. We characterized 334 families at the S0:4 generation in two conditions. One condition was the control, managed with liming, while the other had high aluminum toxicity. Four traits were considered: days to flowering (FL), plant height (PH), grain yield (YLD), and zinc concentration in the polished grain (ZN). The population presented a high tolerance to aluminum toxicity, with more than 72% of the families showing a higher yield under aluminum conditions. The performance of the families under the aluminum toxicity condition was predicted using four different models: a single-environment model and three multi-environment models. The multi-environment models differed in the way they integrated genotype-by-environment interactions. The best predictive abilities were achieved using multi-environment models: 0.67 for FL, 0.60 for PH, 0.53 for YLD, and 0.65 for ZN. The gain of multi-environment over single-environment models ranged from 71% for YLD to 430% for FL. The selection of the best-performing families based on multi-trait indices, including the four traits mentioned above, facilitated the identification of suitable families for recombination. This information will be used to develop a new cycle of recurrent selection through genomic selection.

Funder

Colombian Ministry of Science, Technology and Innovation

Consortium of International Agricultural Research Centers

Publisher

Public Library of Science (PLoS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3