An Anopheles stephensi Promoter-Trap: Augmenting Genome Annotation and Functional Genomics

Author:

Reid William11,Pilitt Kristina1,Alford Robert12,Cervantes-Medina Adriana1,Yu Hao3,Aluvihare Channa2,Harrell Rob2,O’Brochta David A14

Affiliation:

1. Institute for Bioscience and Biotechnology Research, University of Maryland College Park, 9600 Gudelsky Drive, Rockville, MD 20850-3467

2. Insect Transformation Facility, Institute for Bioscience and Biotechnology Research, University of Maryland College Park, 9600 Gudelsky Drive, Rockville, MD 20850-3467

3. Department of Plant Protection, Henan Institute of Science and Technology, East Street Huan-Lan, Xinxiang City, Henan Province 453003, CHINA

4. Department of Entomology, University of Maryland College Park, 4112 Plant Sciences Building, College Park, MD 20742-4454

Abstract

Abstract The piggyBac transposon was modified to generate gene trap constructs, which were then incorporated into the genome of the Asian malaria vector, Anopheles stephensi and remobilized through genetic crosses using a piggyBac transposase expressing line. A total of 620 remobilization events were documented, and 73 were further characterized at the DNA level to identify patterns in insertion site preferences, remobilization frequencies, and remobilization patterns. Overall, the use of the tetameric AmCyan reporter as the fusion peptide displayed a preference for insertion into the 5′-end of transcripts. Notably 183 – 44882 bp upstream of the An. stephensi v1.0 ab initio gene models, which demonstrated that the promoter regions for the genes of An. stephensi are further upstream of the 5′-proximal regions of the genes in the ab inito models than may be otherwise predicted. RNA-Seq transcript coverage supported the insertion of the splice acceptor gene trap element into 5′-UTR introns for nearly half of all insertions identified. The use of a gene trap element that prefers insertion into the 5′-end of genes supports the use of this technology for the random generation of knock-out mutants, as well as the experimental confirmation of 5′-UTR introns in An. stephensi.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3