Cotton Late Embryogenesis Abundant (LEA2) Genes Promote Root Growth and Confer Drought Stress Tolerance in Transgenic Arabidopsis thaliana

Author:

Magwanga Richard Odongo12,Lu Pu1,Kirungu Joy Nyangasi1,Dong Qi1,Hu Yangguang1,Zhou Zhongli1,Cai Xiaoyan1,Wang Xingxing1,Hou Yuqing1,Wang Kunbo1,Liu Fang1

Affiliation:

1. State Key Laboratory of Cotton Biology/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China

2. School of Biological and Physical Sciences (SBPS), Main Campus, Jaramogi Oginga Odinga University of Science and Technology (JOOUST), Main Campus, P.O. Box 210-40601 Bondo, Kenya

Abstract

Abstract Late embryogenesis abundant (LEA) proteins play key roles in plant drought tolerance. In this study, 157, 85 and 89 candidate LEA2 proteins were identified in G. hirsutum, G. arboreum and G. raimondii respectively. LEA2 genes were classified into 6 groups, designated as group 1 to 6. Phylogenetic tree analysis revealed orthologous gene pairs within the cotton genome. The cotton specific LEA2 motifs identified were E, R and D in addition to Y, K and S motifs. The genes were distributed on all chromosomes. LEA2s were found to be highly enriched in non-polar, aliphatic amino acid residues, with leucine being the highest, 9.1% in proportion. The miRNA, ghr-miR827a/b/c/d and ghr-miR164 targeted many genes are known to be drought stress responsive. Various stress-responsive regulatory elements, ABA-responsive element (ABRE), Drought-responsive Element (DRE/CRT), MYBS and low-temperature-responsive element (LTRE) were detected. Most genes were highly expressed in leaves and roots, being the primary organs greatly affected by water deficit. The expression levels were much higher in G. tomentosum as opposed to G. hirsutum. The tolerant genotype had higher capacity to induce more of LEA2 genes. Over expression of the transformed gene Cot_AD24498 showed that the LEA2 genes are involved in promoting root growth and in turn confers drought stress tolerance. We therefore infer that Cot_AD24498, CotAD_20020, CotAD_21924 and CotAD_59405 could be the candidate genes with profound functions under drought stress in upland cotton among the LEA2 genes. The transformed Arabidopsis plants showed higher tolerance levels to drought stress compared to the wild types. There was significant increase in antioxidants, catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) accumulation, increased root length and significant reduction in oxidants, Hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations in the leaves of transformed lines under drought stress condition. This study provides comprehensive analysis of LEA2 proteins in cotton thus forms primary foundation for breeders to utilize these genes in developing drought tolerant genotypes.

Publisher

Oxford University Press (OUP)

Subject

Genetics(clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3