Genome-wide association study of fiber yield-related traits uncovers the novel genomic regions and candidate genes in Indian upland cotton (Gossypium hirsutum L.)

Author:

Joshi Babita,Singh Sanjay,Tiwari Gopal Ji,Kumar Harish,Boopathi Narayanan Manikanda,Jaiswal Sarika,Adhikari Dibyendu,Kumar Dinesh,Sawant Samir V.,Iquebal Mir Asif,Jena Satya Narayan

Abstract

Upland cotton (Gossypium hirsutum L.) is a major fiber crop that is cultivated worldwide and has significant economic importance. India harbors the largest area for cotton cultivation, but its fiber yield is still compromised and ranks 22nd in terms of productivity. Genetic improvement of cotton fiber yield traits is one of the major goals of cotton breeding, but the understanding of the genetic architecture underlying cotton fiber yield traits remains limited and unclear. To better decipher the genetic variation associated with fiber yield traits, we conducted a comprehensive genome-wide association mapping study using 117 Indian cotton germplasm for six yield-related traits. To accomplish this, we generated 2,41,086 high-quality single nucleotide polymorphism (SNP) markers using genotyping-by-sequencing (GBS) methods. Population structure, PCA, kinship, and phylogenetic analyses divided the germplasm into two sub-populations, showing weak relatedness among the germplasms. Through association analysis, 205 SNPs and 134 QTLs were identified to be significantly associated with the six fiber yield traits. In total, 39 novel QTLs were identified in the current study, whereas 95 QTLs overlapped with existing public domain data in a comparative analysis. Eight QTLs, qGhBN_SCY_D6-1, qGhBN_SCY_D6-2, qGhBN_SCY_D6-3, qGhSI_LI_A5, qGhLI_SI_A13, qGhLI_SI_D9, qGhBW_SCY_A10, and qGhLP_BN_A8 were identified. Gene annotation of these fiber yield QTLs revealed 2,509 unique genes. These genes were predominantly enriched for different biological processes, such as plant cell wall synthesis, nutrient metabolism, and vegetative growth development in the gene ontology (GO) enrichment study. Furthermore, gene expression analysis using RNAseq data from 12 diverse cotton tissues identified 40 candidate genes (23 stable and 17 novel genes) to be transcriptionally active in different stages of fiber, ovule, and seed development. These findings have revealed a rich tapestry of genetic elements, including SNPs, QTLs, and candidate genes, and may have a high potential for improving fiber yield in future breeding programs for Indian cotton.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3