Unexpected Diversity of Chloroplast Noncoding RNAs as Revealed by Deep Sequencing of the Arabidopsis Transcriptome

Author:

Hotto Amber M1,Schmitz Robert J2,Fei Zhangjun13,Ecker Joseph R24,Stern David B1

Affiliation:

1. Boyce Thompson Institute for Plant Research and

2. Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, United States Department of Agriculture, Ithaca, New York 14853

3. Plant Biology and Genomic Analysis Laboratorys

4. Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037

Abstract

Abstract Noncoding RNAs (ncRNA) are widely expressed in both prokaryotes and eukaryotes. Eukaryotic ncRNAs are commonly micro- and small-interfering RNAs (18–25 nt) involved in posttranscriptional gene silencing, whereas prokaryotic ncRNAs vary in size and are involved in various aspects of gene regulation. Given the prokaryotic origin of organelles, the presence of ncRNAs might be expected; however, the full spectrum of organellar ncRNAs has not been determined systematically. Here, strand-specific RNA-Seq analysis was used to identify 107 candidate ncRNAs from Arabidopsis thaliana chloroplasts, primarily encoded opposite protein-coding and tRNA genes. Forty-eight ncRNAs were shown to accumulate by RNA gel blot as discrete transcripts in wild-type (WT) plants and/or the pnp1-1 mutant, which lacks the chloroplast ribonuclease polynucleotide phosphorylase (cpPNPase). Ninety-eight percent of the ncRNAs detected by RNA gel blot had different transcript patterns between WT and pnp1-1, suggesting cpPNPase has a significant role in chloroplast ncRNA biogenesis and accumulation. Analysis of materials deficient for other major chloroplast ribonucleases, RNase R, RNase E, and RNase J, showed differential effects on ncRNA accumulation and/or form, suggesting specificity in RNase-ncRNA interactions. 5′ end mapping demonstrates that some ncRNAs are transcribed from dedicated promoters, whereas others result from transcriptional read-through. Finally, correlations between accumulation of some ncRNAs and the symmetrically transcribed sense RNA are consistent with a role in RNA stability. Overall, our data suggest that this extensive population of ncRNAs has the potential to underpin a previously underappreciated regulatory mode in the chloroplast.

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3