Affiliation:
1. Tufts University, Department of Biology, Medford, Massachusetts 02155, and
2. Tufts Sackler School of Graduate Biomedical Sciences, Program in Genetics, Boston, Massachusetts 02111
Abstract
AbstractMany chemotherapeutic agents selectively target rapidly dividing cells, including cancer cells, by causing DNA damage that leads to genome instability and cell death. We used Drosophila melanogaster to study how mutations in key DNA repair genes affect an organism’s response to chemotherapeutic drugs. In this study, we focused on camptothecin and its derivatives, topotecan and irinotecan, which are type I topoisomerase inhibitors that create DNA double-strand breaks in rapidly dividing cells. Here, we describe two polymorphisms in Drosophila Cyp6d2 that result in extreme sensitivity to camptothecin but not topotecan or irinotecan. We confirmed that the sensitivity was due to mutations in Cyp6d2 by rescuing the defect with a wild-type copy of Cyp6d2. In addition, we showed that combining a cyp6d2 mutation with mutations in Drosophila brca2 results in extreme sensitivity to camptothecin. Given the frequency of the Cyp6d2 polymorphisms in publcly available Drosophila stocks, our study demonstrates the need for caution when interpreting results from drug sensitivity screens in Drosophila and other model organisms. Furthermore, our findings illustrate how genetic background effects can be important when determining the efficacy of chemotherapeutic agents in various DNA repair mutants.
Publisher
Oxford University Press (OUP)
Subject
Genetics (clinical),Genetics,Molecular Biology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献