REV1 Coordinates a Multi-Faceted Tolerance Response to DNA Alkylation Damage and Prevents Chromosome Shattering inDrosophila melanogaster

Author:

Khodaverdian Varandt,Sano Tokio,Maggs Lara,Tomarchio GinaORCID,Dias AnaORCID,Clairmont Connor,Tran Mai,McVey MitchORCID

Abstract

AbstractWhen replication forks encounter damaged DNA, cells utilize DNA damage tolerance mechanisms to allow replication to proceed. These include translesion synthesis at the fork, postreplication gap filling, and template switching via fork reversal or homologous recombination. The extent to which these different damage tolerance mechanisms are utilized depends on cell, tissue, and developmental context-specific cues, the last two of which are poorly understood. To address this gap, we have investigated damage tolerance responses following alkylation damage inDrosophila melanogaster. We report that translesion synthesis, rather than template switching, is the preferred response to alkylation-induced damage in diploid larval tissues. Furthermore, we show that the REV1 protein plays a multi-faceted role in damage tolerance in Drosophila. Drosophila larvae lacking REV1 are hypersensitive to methyl methanesulfonate (MMS) and have highly elevated levels of γ-H2Av foci and chromosome aberrations in MMS-treated tissues. Loss of the REV1 C-terminal domain (CTD), which recruits multiple translesion polymerases to damage sites, sensitizes flies to MMS. In the absence of the REV1 CTD, DNA polymerases eta and zeta become critical for MMS tolerance. In addition, flies lacking REV3, the catalytic subunit of polymerase zeta, require the deoxycytidyl transferase activity of REV1 to tolerate MMS. Together, our results demonstrate that Drosophila prioritize the use of multiple translesion polymerases to tolerate alkylation damage and highlight the critical role of REV1 in the coordination of this response to prevent genome instability.Author SummaryOrganisms have evolved several ways to continue copying their DNA when it is damaged, grouped into the categories of translesion synthesis and template switching. These damage tolerance mechanisms prevent replication forks from collapsing when they encounter DNA damage and prevent catastrophic genome instability and cell death. While the proteins and pathways involved in damage tolerance are beginning to be understood at the single cell level, how they are regulated in multicellular organisms is an intriguing question. In this study, we investigated the mechanisms by which Drosophila tolerate alkylation damage during their development. We discovered that tissues containing rapidly dividing diploid cells favor translesion synthesis over template switching, preferentially utilizing different translesion polymerases in a context-dependent manner. Furthermore, we showed that the REV1 protein, best known for its role in recruiting translesion DNA polymerases to damage sites, performs multiple functions during damage tolerance. Together, our results demonstrate that damage tolerance preferences for multicellular organisms may differ from those observed in cultured cells, and establish Drosophila as a useful model system for studying tolerance mechanisms.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3