Strain-Induced Molecular Orientation and Crystallization in Natural and Synthetic Rubbers under Uniaxial Deformation by In-situ Synchrotron X-ray Study

Author:

Toki Shigeyuki1,Sics Igors1,Ran Shaofeng1,Liu Lizhi1,Hsiao Benjamin S.1,Murakami Syozo2,Tosaka Masatoshi2,Kohjiya Shinzo2,Poompradub Sirilux2,Ikeda Yuko3,Tsou Andy H.4

Affiliation:

1. 1Department of Chemistry, State University of New York at Stony Brook Stony Brook, NY 11794-3400; email: stoki@mail.chem.sunysb.edu

2. 2Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu, 611-0011, Japan

3. 3Department of Chemistry and Materials Technology, Kyoto Institute of Technology Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

4. 4ExxonMobil Chemical Company, Baytown Polymers Center, Baytown, TX 77522-5200

Abstract

Abstract In-situ synchrotron wide-angle X-ray diffraction (WAXD) studies and simultaneous measurements of stress and strain during uniaxial stretching of various vulcanized rubbers were carried out (at room temperature and 0°C) to reveal the strain-induced molecular orientation and crystallization relationships. Rubbers evaluated included natural rubber (NR), synthetic poly-isoprene rubber (IR), poly-cis-1,4-butadiene rubber (BR) and butyl rubber (IIR). Some universal features were observed in these systems: (i) At high strains (> 5.0), the majority of the chains (up to 50 ≈ 75%) in natural and synthetic rubbers remained in the un-oriented amorphous state with only a small amount of crystalline fraction formed (10–20%). The rest of the chains were in the oriented amorphous state. (ii) During deformation, the oriented amorphous chains acted as precursors to strain-induced crystallization. A network of micro-fibrillar crystallites is formed within the closely populated vulcanization points, leading to the enhancement of mechanical properties at high strains. Different rubbers exhibited different behaviors during strain-induced crystallization. For example, poly-isoprenes (NR and IR vulcanized with sulfur and peroxide) showed strain-induced crystallization at a low strain of 2.5, resulting in larger crystalline but smaller oriented amorphous fractions. In contrast, BR and IIR crystallized at a higher strain of 4.0 lead to higher molecular orientation, higher oriented amorphous, but smaller crystalline fractions. The relationship between the molecular orientation and crystallization in strained rubber depends on the intrinsic crystallizability of the chains and the topology of the crosslinked network.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3