VISCOELASTICITY AND DYNAMIC FATIGUE CRACK GROWTH BEHAVIOR OF NATURAL RUBBER/CIS-POLYBUTADIENE RUBBER COMPOSITES

Author:

Han Qing-Yuan1,Wu You-Ping12

Affiliation:

1. 1 State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, PR China

2. 2 Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, PR China

Abstract

ABSTRACT Because cis-polybutadiene rubber (BR) can improve the fatigue crack growth (FCG) resistance of natural rubber (NR) in the low-tearing-energy (G) range, a blending system of NR/BR is often used in tire materials. In this study, based on relationship of (FCG rate (dc/dN) − G) established from the perspective of fracture mechanics and then inspired by Persson's theory and starting from the perspective of viscoelasticity, the FCG behavior and mechanism of NR/BR were investigated. NR/BR with different blending ratios were prepared, and dc/dN under different G inputs (500/1500 J/m2) was measured. According to the viscoelastic parameters (storage modulus E′, loss factor tan δ, and loss compliance modulus J″) recorded in situ, energy dissipation distribution at the crack tip (energy consumption for FCG inside crack tip: G0 and energy loss in linear viscoelastic zone near crack tip: G0f [v, T]) was determined, and the relationship of (viscoelasticity − dc/dN) was finally set up. When G = 500 J/m2, blending BR can reduce dc/dN as compared with pure NR. On one hand, with a higher BR fraction, an increased cross-linking density and enhanced filler network provided greater rigidity, which increased E′; on the other hand, a low glass transition temperature and flexible chain of BR reduced hysteresis, which decreased tan δ. The joint action led to a decrease in J″, which caused more G0f (v, T) and less G0, resulting in the ultimate reduction of dc/dN. In contrast, for G = 1500 J/m2, when the BR content was >50 phr, dc/dN showed a significant increase. Although more BR evidently decreased J″ and then led to a large amount of G0f (v, T), due to absence of strain-induced crystallization, the chain orientation of BR was hard to resist FCG when G increased. Finally, the morphology of the crack tip propagation path was captured to corroborate the different orientation characteristics of NR and BR and their effects on FCG behavior.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3