Computation of Stresses, Strains, and Deformations of Tires

Author:

Ridha R. A.1

Affiliation:

1. 1Central Research Laboratories, The Firestone Tire & Rubber Company, Akron, Ohio 44317

Abstract

Abstract The pneumatic tire is often taken for granted as a simple and reliable component of the vehicle. A closer look, however, shows that the tire in service is subjected to severe stresses and deformations whose quantities must be determined in order to accurately predict tire performance. Modern tire structures have evolved through a series of modifications of the original pneumatic rubber tire. These modifications were based on field experiences and on mostly experimental studies of tire behavior. The use of analytical techniques to calculate tire stresses and deformations remained limited in scope for a long time because the complexity of the tire structure placed it beyond the domain of available methods of analysis. The recent emphasis on analytical techniques is due, at least partly, to their potential for becoming less time consuming and less expensive than experimental methods, the need for predicting a tire's behavior before its manufacture, and the notable advances in computational and structural analysis methods. In this paper, these methods are described and applied to the calculation of tire stresses and deformations. Structural analysis is the analytical determination of structural responses to a prescribed set of applied loads. The responses may be displacements or distortions if force loads are known, or forces if displacement or distortions are known. Given the geometry of a structure (shape, dimensions), the relevant properties of its component materials, the magnitude and distribution of applied loads, and any constraints from boundary conditions, then structural analysis is used to calculate displacements, strains, or stresses at any chosen location in or on the structure. These calculated values may be compared to those required for functionality of the structure. Although structural analysis is not directly applicable to determining the most efficient configuration of the structural components, the analysis of successive well chosen modifications can often optimize compositions or geometries. The application of structural analysis to a tire requires (a) knowledge of the relevant physical properties of the component materials, and their configuration in the tire, (b) complete characterization of the applied loads, and (c) an analytical technique (i.e. theory) for calculating the required responses. These requirements are explained in the following sections.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3