Dynamic Mechanical Properties of a Carbon Black-Loaded Butyl Rubber Vulcanizate and a Carbon Black-Loaded Polyisobutylene

Author:

Ferry John D.1,Fitzgerald Edwin R.2

Affiliation:

1. 1Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706

2. 2Johns Hopkins University, Baltimore, Maryland 21218

Abstract

Abstract The dynamic mechanical properties of rubbers loaded with carbon black have been the subject of many investigations because of their importance in the performance of products, especially the energy dissipation, skid resistance, and other properties of vehicle tires. However, the important variables of frequency and temperature in oscillating deformations have usually been explored in fragmentary fashion. In particular, the degree to which these variables can be treated with frequency-temperature superposition appears to differ considerably depending on the type of compound investigated. In many cases, data have been insufficient to establish whether the essential criterion for superposition, namely, the same temperature dependence for all relaxation mechanisms, is satisfied. For this purpose, extensive measurements over wide ranges of closely spaced frequencies and temperatures are required. Such data are needed, in any case, to determine the responses of elements of a vehicle tire over the ranges of temperature and time scale to which they are subjected in use and to provide input information for thermo-mechanical modelling of power loss in tires. This paper is intended to be one of a series on dynamic mechanical properties of a variety of carbon black-loaded compounds over wide ranges of frequency and temperature. It describes results for a vulcanized butyl rubber loaded with a medium processing channel black, and the almost chemically identical linear polymer polyisobutylene loaded with a semireinforcing furnace black; these results are compared with previously published data for vulcanized butyl gum and pure polyisobutylene . The shear strain amplitude in these measurements is very small, of the order of 10−5 to 10−7, in a range of linear viscoelasticity as confirmed by sensitive tests, and thus the Mullins effect is avoided. The prominent dependence of viscoelastic properties on strain amplitude, as investigated by Payne and Watson and later workers, appears at considerably higher strains of 10−3 or more. Of course, the behavior in large deformations will be very different from that described here, but it is important to understand first the properties of the structure close to its equilibrium rest state.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3