Temperature Dependence of Viscoelastic Properties of Carbon-Black-Filled Rubbers in Small Shearing Deformations

Author:

Arai Koichi1,Ferry John D.1

Affiliation:

1. 1Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706

Abstract

Abstract Measurements of dynamic storage and loss shear moduli G′ and G″ (0.12 to 2 Hz) and shear relaxation modulus G(t) (up to 104 s) have been made on six vulcanized and one unvulcanized carbon-black-filled rubber compounds over a temperature range from −22.5° to 63°C. The maximum shear strain in the oscillatory deformations was less than 0.005 and in the stress relaxation measurements, 0.015. The temperature dependence of viscoelastic properties could not be fully described in terms of horizontal shifts (αT) of logarithmic time or frequency scales. It could, however, be largely described by vertical shifts (ST) corresponding to uniform temperature dependence of the magnitudes of contributions to modulus from a spectrum of relaxation mechanisms. There were some departures from this behavior, especially in a blend containing two rubber species and in the unvulcanized compound at long times. The temperature dependence of the ST shift factors followed the van't Hoff equation with values of ΔH from 5.9 to 14.7 kJ/mole, attributable to a heat of dissociation of contacts between particle aggregates. The slow relaxation over many logarithmic decades of time scale in the rubbery zone of viscoelastic behavior is attributed to adjustments of such contacts by Brownian motion, which leave the density of the structure unchanged as shown by constancy of the differential dynamic modulus measured by superposed small oscillating deformations.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. THIXOTROPIC FLOCCULATION EFFECTS IN CARBON BLACK–REINFORCED RUBBER: KINETICS AND THERMAL ACTIVATION;Rubber Chemistry and Technology;2021-04-01

2. The Fatigue Threshold of Rubber and Its Characterization Using the Cutting Method;Fatigue Crack Growth in Rubber Materials;2020

3. THE PAYNE EFFECT: PRIMARILY POLYMER-RELATED OR FILLER-RELATED PHENOMENON?;Rubber Chemistry and Technology;2019-10-01

4. Reinforcement of Rubber and Filler Network Dynamics at Small Strains;Designing of Elastomer Nanocomposites: From Theory to Applications;2016

5. The Viscoelastic Behavior of Rubber and Dynamics of Blends;The Science and Technology of Rubber;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3