COMPARISON OF THREE DIFFERENT DEGRADATION METHODS TO PRODUCE LIQUID EPOXIDIZED NATURAL RUBBER

Author:

Rooshenass Pejvak1,Yahya Rosiyah1,Gan Seng Neon1

Affiliation:

1. Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Abstract

ABSTRACT Epoxidized natural rubber (ENR) has a high molecular weight, which has limited its solubility and processibility. For many potential applications, such as adhesives and coatings, ENR needs to be degraded into shorter chain lengths to form liquid ENR (LENR). We compared three different methods of preparing LENR: mechanical milling, chemical degradation initiated by potassium peroxodisulfate, and photooxidation initiated by ultraviolet (UV) irradiation. All the methods break down the ENR via free radicals but at different rates and by different mechanisms. In the LENR produced by these methods, ketone, aldehyde, carboxylic acid, and ester and lactone groups were observed; however, a hydrofuranic structure was only formed with UV degradation. The oxirane group was not affected significantly during the degradation, indicating that the chain sessions occurred predominantly via the –C=C– bonds. Spectroscopic analyses revealed that the consumption of a double bond is related to the extent of degradation initiated by potassium peroxodisulfate and UV irradiation. Mastication with a two roll mill produced LENR with a greater degree of unsaturation and fewer polar groups; therefore, presumably, significant chain scissions occurred from the rupturing of –C–C– single bonds. Comparing the reaction time, more LENR was obtained by UV degradation. As expected, an increase in the oxygen concentration led to the generation of more radicals, which could result in some coupling reactions.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3