Degradation during Mixing of Silica-Reinforced Natural Rubber Compounds

Author:

Kraibut Ammarin12ORCID,Kaewsakul Wisut3ORCID,Sahakaro Kannika1ORCID,Saiwari Sitisaiyidah1ORCID,Noordermeer Jacques W. M.4,Dierkes Wilma K.2ORCID

Affiliation:

1. Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000, Thailand

2. Sustainable Elastomer Systems, Department of Mechanics of Solids, Surfaces and Systems, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

3. Elastomer Technology and Engineering, Department of Mechanics of Solids, Surfaces and Systems, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

4. Netherlands Natural Rubber Foundation (Rubber-Stichting), 3051 JG Rotterdam, The Netherlands

Abstract

The optimal mixing conditions for silica-filled NR compounds dictate the need to proceed at a high temperature, i.e., 150 °C, to achieve a sufficient degree of silanization. On the other hand, natural rubber is prone to degradation due to mechanical shear and thermal effects during mixing, particularly at long exposure times. The present work investigates NR rubber degradation during mixing in relation to prolonged silanization times. The Mooney viscosity and stress relaxation rates, bound rubber content, storage modulus (G’), and delta δ were investigated to indicate the changes in the elastic/viscous responses of NR molecules related to rubber degradation, molecular chain modifications, and premature crosslinking/interaction. In Gum NR (unfilled), an increase in the viscous response with increasing mixing times indicates a major chain scission that causes a decreased molecular weight and risen chain mobility. For silica-filled NR, an initial decrease in the Mooney viscosity with increasing silanization time is attributed to the chain scission first, but thereafter the effect of the degradation is counterbalanced by a sufficient silanization/coupling reaction which leads to leveling off of the viscous response. Finally, the higher viscous response due to degradation leads to the deterioration of the mechanical properties and rolling resistance performance of tire treads made from such silica-filled NR, particularly when the silanization time exceeds 495 s.

Funder

Dutch Natural Rubber Foundation

Rubber Stichting, the Netherlands

Faculty of Science and Technology, Prince of Songkla University Pattani campus, Thailand

Prince of Songkla University Ph.D. Scholarship

Publisher

MDPI AG

Subject

General Materials Science

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3