MUSSEL-MIMETIC ELASTOMERS OF VARIED FUNCTIONALITY DESIGN FOR ELASTOMERIC COMPOSITES

Author:

Pan Xiao-Dong1,Yan Yuan-Yong1,Qin Zengquan1,Brumbaugh Dennis R.1,Sadhukhan Pat1

Affiliation:

1. Bridgestone Americas Center for Research and Technology, 1200 Firestone Parkway, Akron, OH 44317

Abstract

ABSTRACT Bulk viscoelasticity and tensile behavior are examined for cross-linked compounds made of mussel-mimetic elastomers of varied functionality design. During polymerization, the mussel-mimetic functionalities containing the 3,4-dihydroxyphenyl (or catechol) group can be incorporated at the molecule chain head, along the backbone, and/or at the molecule chain tail. The compounds are either unfilled or filled to the same filler volume fraction with a single filler chosen among carbon black (hydrophobic), precipitated silica (hydrophilic), and titanium oxide (hydrophilic). For polymers bearing multiple mussel-mimetic functional groups, the polymer cold flow resistance becomes significantly enhanced, arising from the strong intermolecular hydrogen bonding interactions. Such strong intermolecular hydrogen-bonding interactions also affect the bulk viscoelasticity and tensile behavior for the cross-linked gum compounds. Because the mussel-mimetic functional groups exhibit obvious affinity to all three types of filler particles, the extent of modification to bulk viscoelasticity and reinforcement for the filled compounds is observed to vary with the distribution of such functionalities along a polymer molecule, the chemical groups immediately next to the catechol group, and the specific type of filler. As expected, microscale filler dispersion is improved from the strong polymer–filler interactions.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3