Affiliation:
1. High Institute for Elastomer Industries, Yanbu, Saudi Arabia
2. The University of Akron Research Foundation, Akron, Ohio 44325
Abstract
ABSTRACT
Understanding the physics of the particle network in filled rubber is key to developing reduced energy loss compounds for automobile tires and other applications. Progress toward that goal is evident in the recent literature, which reveals some fascinating parallels between the effect of temperature on traditional glassy materials and the role of deformation on the behavior of granular materials, foams, and particle-filled polymers and pastes. The phenomenological treatment of structural relaxation (physical aging) in the nonequilibrium state of glasses, which includes the characteristic features of nonexponentiality and nonlinearity, is extended in the present work to model the progressive structural arrest (jamming) that occurs during the filler flocculation process in uncrosslinked elastomers. A new concept of fictive dynamic strain is developed for nanoparticle-reinforced rubbery polymers by drawing an analogy to the use of fictive temperature in nonequilibrium glasses. The fictive strain converges toward the actual strain as the system approaches steady state. The utility of the approach is demonstrated using literature data for the filler flocculation process of a nanoparticle-filled elastomer.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献