Friction on Wet Surfaces of Tire-Tread-Type Vulcanizates

Author:

Sabey Barbara E.1,Lupton G. N.1

Affiliation:

1. 1Road Research Laboratory, Harmondsworth, Middlesex, England

Abstract

Abstract A laboratory investigation has been made into the variation with temperature of the hardness and resilience of a wide variety of rubber compounds of the tire tread type. The effect of hardness and resilience on the fractional properties of the compounds under wet conditions has also been studied. In the first series of tests the resilience and hardness of 25 compounds were measured over a temperature range 0° to 80° C. All were vulcanized tire tread type compounds, and the basic materials used comprised 14 natural rubbers, 7 styrene/butadiene (SBR) rubbers, 2 butyl, 1 polybutadiene, and 1 ethylene/propylene. The tests showed a marked increase in resilience with increasing temperature for all compounds except the polybutadiene; the hardness of all compounds changed very little with temperature, only a slight decrease being observed over the whole temperature rise. Nine compounds of representative resilience and hardness were selected for a second series of tests in which friction was measured over a temperature range 1° to 40° C on seven surfaces representing roads of different textures. For eight of the compounds, friction values decreased with increase in temperature; for the other compound the friction increased to a maximum value at 30° C. These changes in friction cannot be explained by changes in hardness of the compounds, but they are in accordance with resilience changes, taking into account the different test conditions obtaining in the friction and resilience tests. The friction tests also showed that with the portable skid-resistance tester used to measure friction the sharpness of the projections in the road surface is more important than their size in determining the friction values under wet conditions, even when rubber compounds of low resilience are used. The implications of the findings and their application to the study of friction between tire and road are discussed. In particular, they have a bearing on the correct interpretation of resilience measurements of tire tread materials in relation to friction values under wet conditions.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3