Effect of Fillers on Wet Skid Resistance of Tires. Part I: Water Lubrication Vs. Filler-Elastomer Interactions

Author:

Wang Meng-Jiao1,Kutsovsky Yakov1

Affiliation:

1. 1Cabot Corporation, Business & Technology Center, 157 Concord Road Billerica, Massachusetts 01821; email meng-jiao_wang@cabot-corp.com

Abstract

Abstract From results of testing materials using a new filler, it was recognized that the wet skid resistance of tires is determined not only by dynamic properties of the tread compounds, but also by elastohydrodynamic lubrication, especially on the micro scale. By reviewing the basic concepts of friction under dry and wet conditions, and friction coefficients of possible model materials that are at the worn surface of tire tread compounds and road surface, it is inferred that after skid testing under wet conditions, the top skin of the worn surface contains some bare silica for silica-filled compounds, but the carbon black aggregates remain covered by rubber film. This inference is supported by measuring the surface energies of the fillers, analyzing the properties of filled vulcanizates, and direct investigation of worn surface of the compounds after skid test by AFM. The different surface compositions between silica- and carbon black-filled vulcanizates would lead to different effects on micro-elastohydrodynamic lubrication, hence wet skid resistance, which will be the topic of next report of this study.

Publisher

Rubber Division, ACS

Subject

Materials Chemistry,Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3