Survival Nomogram for Young Breast Cancer Patients Based on the SEER Database and an External Validation Cohort

Author:

Huang Xiao,Luo Zhou,Liang Wei,Xie Guojian,Lang Xusen,Gou Jiaxiang,Liu Chenxiao,Xu Xiangnan,Fu Deyuan

Abstract

Abstract Background Young breast cancer (YBC) patients are more prone to lymph node metastasis than other age groups. Our study aimed to investigate the predictive value of lymph node ratio (LNR) in YBC patients and create a nomogram to predict overall survival (OS), thus helping clinical diagnosis and treatment. Methods Patients diagnosed with YBC between January 2010 and December 2015 from the Surveillance, Epidemiology, and End Results (SEER) database were enrolled and randomly divided into a training set and an internal validation set with a ratio of 7:3. An independent cohort from our hospital was used for external validation. Univariate and least absolute shrinkage and selection operator (LASSO) regression were used to identify the significant factors associated with prognosis, which were used to create a nomogram for predicting 3- and 5-year OS. Results We selected seven survival predictors (tumor grade, T-stage, N-stage, LNR, ER status, PR status, HER2 status) for nomogram construction. The C-indexes in the training set, the internal validation set, and the external validation set were 0.775, 0.778 and 0.817, respectively. The nomogram model was well calibrated, and the time-dependent ROC curves verified the superiority of our model for clinical usefulness. In addition, the nomogram classification could more precisely differentiate risk subgroups and improve the discrimination of YBC prognosis. Conclusions LNR is a strong predictor of OS in YBC patients. The novel nomogram based on LNR is a reliable tool to predict survival, which may assist clinicians in identifying high-risk patients and devising individual treatments.

Funder

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Oncology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3