Development of an algorithm for the Earth remote sensing data classification using deep machine learning methods for analyzing the geosystem model of the territory

Author:

Yamashkin S.A.1ORCID,Yamashkin A.A.1ORCID,Zanozin V.V.2ORCID,Barmin A.N.2ORCID

Affiliation:

1. Ogarev Mordovia State University

2. Astrakhan State University

Abstract

The authors propose their solving the task of improving the accuracy of remote sensing data classification under conditions of labeled data scarcity through using a geosystem approach that involves analyzing the genetic uniformity of various-scale territorially adjacent formations and hierarchical levels. The advantage of the proposed GeoSystemNet model is a great number of freedom degrees, which enables flexible configuration of the model based on the task being solved. Testing the GeoSystemNet model for classifying the EuroSAT set, algorithmically expanded from the perspective of the geosystem approach, showed the possibility of increasing the classification accuracy under the conditions of training data scarcity within 9 %, as well as approaching the accuracy of the deep ResNet50 and GoogleNet models. The authors note that the use of the geosystem approach according to the methodology proposed in the article for solving the above-mentioned problem requires an individual project approach to the formation of the data for analysis.

Publisher

FSBI Center of Geodesy, Cartography, and SDI

Subject

Computers in Earth Sciences,Earth-Surface Processes,Geophysics

Reference15 articles.

1. Beruchashvili N.L. Chetyre izmereniya landshafta. Moskva: Mysl, 1986, 182 p.

2. Kikin P. M., Kolesnikov A. A., Portnov A. M., Grishchenko D. V. Analiz i prognozirovanie prostranstvenno-vremennykh ekologicheskikh pokazatelei s ispol'zovaniem metodov mashinnogo obucheniya. InterKarto. InterGIS, 2020, Vol. 26, no. 3, pp. 53–61. DOI: 10.35595/2414-9179-2020-3-26-53-61.

3. Nikolaev V. A. Landshaftovedenie. Moskva: Izd-vo MGU, 2000, 2000, 94 p.

4. Sochava V.B. Vvedenie v uchenie o geosistemah. Novosibirsk: Nauka, 1978, 320 p.

5. Bengio Y., LeCun Y. (2007) Scaling learning algorithms towards AI. Large-scale kernel machines, no. 34 (5), pp. 1-41.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3