Natural language processing systems for data extraction and mapping on the basis of unstructured text blocks

Author:

Kikin Pavel1,Kolesnikov Alexey2,Portnov Alexey3,Grischenko Denis2

Affiliation:

1. Peter the Great St. Petersburg Polytechnic University (SPbPU), Polytechnicheskaya str., 29, 195251, St. Petersburg, Russia,

2. Siberian State University of Geosystems and Technologies, Plakhotnogo str., 10, 630108, Novosibirsk, Russia,

3. Moscow State University of Geodesy and Cartography, Gorokhovsky lane, 4, 105064, Moscow, Russia,

Abstract

The state of ecological systems, along with their general characteristics, is almost always described by indicators that vary in space and time, which leads to a significant complication of constructing mathematical models for predicting the state of such systems. One of the ways to simplify and automate the construction of mathematical models for predicting the state of such systems is the use of machine learning methods. The article provides a comparison of traditional and based on neural networks, algorithms and machine learning methods for predicting spatio-temporal series representing ecosystem data. Analysis and comparison were carried out among the following algorithms and methods: logistic regression, random forest, gradient boosting on decision trees, SARIMAX, neural networks of long-term short-term memory (LSTM) and controlled recurrent blocks (GRU). To conduct the study, data sets were selected that have both spatial and temporal components: the values of the number of mosquitoes, the number of dengue infections, the physical condition of tropical grove trees, and the water level in the river. The article discusses the necessary steps for preliminary data processing, depending on the algorithm used. Also, Kolmogorov complexity was calculated as one of the parameters that can help formalize the choice of the most optimal algorithm when constructing mathematical models of spatio-temporal data for the sets used. Based on the results of the analysis, recommendations are given on the application of certain methods and specific technical solutions, depending on the characteristics of the data set that describes a particular ecosystem

Publisher

LLC Kartfond

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3