Development of LTCC Smart Channels for Integrated Chemical, Temperature, and Flow Sensing

Author:

Ho Clifford K.1,Peterson Kenneth A.1,McGrath Lucas K.1,Turner Timothy S.1

Affiliation:

1. Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185-0735, Phone: (505) 844-2384; Fax: (505) 844-7354, E-mail:ckho@sandia.gov

Abstract

This paper describes the development of “smart” channels that can be used simultaneously as a fluid channel and as an integrated chemical, temperature, and flow sensor. The uniqueness of this device lies in the fabrication and processing of low-temperature co-fired ceramic (LTCC) materials that act as the common substrate for both the sensors and the channel itself. Devices developed in this study have employed rolled LTCC tubes, but grooves or other channel shapes can be fabricated depending on the application requirements. The chemical transducer is fabricated by depositing a conductive polymer “ink” across a pair of electrodes that acts as a chemical resistor (chemiresistor) within the rolled LTCC tube. Volatile organic compounds passing through the tube are absorbed into the polymers, causing the polymers to reversibly swell and change in electrical resistance. The change in resistance is calibrated to the chemical concentration. Multiple chemiresistors have been integrated into a single smart channel to provide chemical discrimination through the use of different polymers. A heating element is embedded in the rolled tube to maintain a constant temperature in the vicinity of the chemical sensors. Thick-film thermistor lines are printed to monitor the temperature near the chemical sensor and at upstream locations to monitor the incoming ambient flow. The thermistors and heating element are used together as a thermal anemometer to measure the flow rate through the tube. Configurations using both surface-printed and suspended thermistors have been evaluated.

Publisher

IMAPS - International Microelectronics Assembly and Packaging Society

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3