Author:
,Selmane N.,Cheknane A., ,Khemloul F., ,Hilal H. S., ,Helal M. H. S., ,Baydogan N.,
Abstract
High performance and safe light-emitting devices (LEDs) are needed. Highly efficient IIIV nitride semiconductors are known for short-wavelength LEDs. Multiple-quantum well (MQW) are considered in LEDs. Influence of MQW and indium concentration on LED performance are studied here in GaN(n)/InxGa1-xN(i)/GaN(i)/AlGaN(p)/GaN(p) LEDs, where GaN(n) and GaN(p) have different dopants to formulate junctions, InxGa1-xN(i) is a 3 nm-thick intrinsic QW, GaN(i) is barrier intrinsic layer and AlGaN(p) is a 15 nm-thick electron blocking layer (EBL). Simulation is performed by Tcad-Silvaco. Current versus voltage (I-V) plots, luminosity power, band diagram, spectrum response, radiative recombination rate and electric field effect, are investigated to rationalize effects of InxGa1- xN(i) QW number and x. Increasing (x) improves radiative recombination rate, spectral power and band gap at less current. Devices with 6 quantum wells and x= 0.16 or 0.18 exhibit best performance. Minimizing x at 0.16, at high performance, is described.
Publisher
Virtual Company of Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献