Novel rare earth metal and aluminium codoped ZnO photocatalysts for degradation of rhodamine b dye

Author:

Viswaksenan M. S.,Simi A.,Panneerselvam A.

Abstract

In this study, samarium and aluminium codoped zinc oxide nanostructures were produced via a soft chemical route, and their structural, morphological, optical, and photocatalytic capabilities were investigated. X-ray diffraction (XRD) patterns and photoluminescence (PL) studies show that both undoped and Sm & Al codoped ZnO nanostructures have a hexagonal wurtzite crystal structure. The shape of the sample's hexagonal nanostructures, as seen in FESEM pictures, changes as the amount of Sm3+ doping increases. Sm3+ and Al2+ ions have been incorporated into ZnO, as seen by the EDX spectra. ZnO nanostructures were thoroughly studied to learn how Al2+ and Sm3+ doping affected their structure, shape, absorption, emission, and photocatalytic activity. The capacity to absorb visible light is enhanced by the incorporation of Sm3+ ions, which causes a red shift in the optical energy band gap from 2.5 to 3.2 eV. Based on the results of in-depth photocatalytic tests, it has been shown that Sm & Al codoped ZnO nanostructures exhibit the highest photodegradation efficiency for RhB dye for Sm0.04MAl0.04MZn0.92MO, i.e. 84%, when exposed to visible light. ZnO, when doped with a rare earth metal ion (Sm3+), displays enhanced photocatalytic efficiency and might have real-world uses. In this research, nanoscale photocatalysts, as manufactured, degrade RhB dye effectively as a photocatalyst

Publisher

Virtual Company of Physics

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Structural Biology

Reference44 articles.

1. [1] Ilyas, Muhammad, Waqas Ahmad, Hizbullah Khan, Saeeda Yousaf, Muhammad Yasir, and

2. Anwarzeb Khan, Reviews on environmental health 34, no. 2 (2019): 171-186;

3. https://doi.org/10.1515/reveh-2018-0078

4. [2] Ahmad, Talha, Rana Muhammad Aadil, Haassan Ahmed, Ubaid ur Rahman, Bruna CV Soares,

5. Simone LQ Souza, Tatiana C. Pimentel et al., Trends in Food Science & Technology 88 (2019):

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3