Novel controlling pathway for metallic nanoparticles by laser assisted ion-reduction process

Author:

Shlaga R. A., ,Alwan A. M.,Mohammed M. S., ,

Abstract

In this work, the morphological and plasmonic features of the AgNPs which formed by ion-reduction process was carried out extensively. The application of the laser beam during the ion- reduction process has significant effect in the reconstruction of the formed AgNPs with small dimensions and non-frequent morphologies, according to the laser illumination intensity. For non-illumination process the deposited form of the AgNPs appear aggregated into cluster of layer AgNPs size due to the chemical reaction at Si interface, the AgNPs sizes varied from 0.85 to1.2 µm; while at lower laser intensity of about 250 mW/cm2 the AgNPs sizes varied from 0.1 to 1.0 µm, while at high intensity upto 400 mW/cm2 the AgNPs sizes varied from 0.05 to 0.4 µm. The hot spot dimension for non-illumination process varied from 1 to 11 nm while at low intensity of 250 mW/cm2 the hot spot dimension varied from 1to 8 nm. At high intensity upto 400 mW/cm2 , the hot spot varied from 0.1 to 14 nm. The XRD for the generated Ag nanoparticles / Si nanocrystallites, for non- illumination the grain size about 6.171 nm and SSD about 92.687 m2 /g while at low intensity of 250 mW/cm2 the grain size about 4.759nm and SSD about 120.191 m2 /g. At high intensity of 350 mW/cm2 , the grain size about 2.037nm and SSD about 280.847m2 /g uniform distributed AgNPs with minimum hot spot regions can be realized with 350mW/cm2 laser illumination intensity. This process is considerable as a novel work which can be adopted modification at the plasmonic features of metallic nanoparticles for SERs application.

Publisher

Virtual Company of Physics

Subject

Surfaces, Coatings and Films,Physics and Astronomy (miscellaneous),Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3