Digitalization in Production Logistics: How AI, Digital Twins, and Simulation Are Driving the Shift from Model-based to Data-driven Approaches

Author:

Jeong Yongkuk

Abstract

The paradigm shift from model-based to data-driven approaches in production logistics is radically transforming the manufacturing landscape. This paper delves into the profound implications of this transition, emphasizing the instrumental role of simulation and digital twins. Through an exhaustive literature review, the emerging trends in data-driven approaches and the driving forces behind this change are elucidated. A comparative case study is presented, contrasting the model-based approach, which employs predefined models and principles in simulations, with the innovative data-driven approach, which utilizes real-time data and machine learning for system monitoring and predictions in production logistics. The analysis reveals the heightened efficiency, adaptability, and effectiveness offered by data-driven approach, showcasing their superiority. Additionally, the prospective roles of AI, particularly large language models like ChatGPT, in enhancing data-driven production logistics are investigated. Exploratory scenarios envision the future trajectories of simulation and digital twin applications in this rapidly evolving field. This paper provides academia and industry with a comprehensive overview of the digitalization in production logistics, emphasizing the immense promise of data-driven approach and AI.

Publisher

International Journal of Precision Engineering and Manufacturing-Smart Technology of Korean Society for Precision Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Developing an IoT Adoption Framework for Library Management for Public Tertiary Institutions in Ghana;Advances in Library and Information Science;2024-01-26

2. Development of Roll Tapping Machine Capable of Synchronized Control of Spindle Rotation and Feeding Speed;International Journal of Precision Engineering and Manufacturing;2024-01-23

3. Intelligent Manufacturing through Generative Artificial Intelligence, Such as ChatGPT or Bard;SSRN Electronic Journal;2024

4. A Finite Element Model of an Electric Motor with an Unbalanced Rotor for Vibration Data Generation;International Journal of Precision Engineering and Manufacturing-Smart Technology;2024-01-01

5. Integrating Virtual Twin and Deep Neural Networks for Efficient and Energy-Aware Robotic Deburring in Industry 4.0;International Journal of Precision Engineering and Manufacturing;2023-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3