Physics-informed neural network: principles and applications

Author:

Son Seho,Jeong Jinho,Jeong Dayeon,ho Sun Kyung,Oh Ki-Yong

Abstract

This chapter delves into the fascinating characteristics of physics-informed neural networks (PINNs) by outlining their fundamental principles, including their mathematical foundations and structures. PINNs are designed by incorporating governing physical equations into the loss function as constraints, which helps to ensure precise output predictions even in areas with limited or no data. This chapter presents various strategies to apply PINNs to complex systems, thereby addressing the shortcomings of conventional PINNs. Additionally, multiphysics-informed neural networks (MPINNs) are introduced, with a special emphasis on complex mechatronic systems. The effectiveness of the MPINN framework is illustrated through examples such as an electric motor and a lithium-ion battery, demonstrating accurate and efficient multidimensional predictions for mechatronic systems despite limited data availability. These applications underscore the potential of MPINNs to mitigate data scarcity challenges in various industries.

Publisher

IntechOpen

Reference66 articles.

1. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Advances in Neural Information Processing Systems. 2017;. DOI: 10.48550/arXiv.1706.03762

2. Devlin J, Chang M-W, Lee K, Toutanova K. Bert: Pre-Training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805. 2018. DOI: 10.48550/arXiv.1810.04805

3. Lei S, Yi W, Ying C, Ruibin W. Review of attention mechanism in natural language processing. Data Analysis and Knowledge Discovery. 2020;:1-14. DOI: 10.11925/infotech.2096-3467.2019.1317

4. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Communications of the ACM. 2012;:84-90. DOI: 10.1145/3065386

5. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016:779-788

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3