Testing edible oil authenticity by using smartphone based spectrometer

Author:

Mai Hanh Hong1,Le Tran Thinh1

Affiliation:

1. Faculty of Physics, VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, Vietnam

Abstract

In recent years, there has been an increasing interest in the classification of edible vegetable oils, examining authenticity and in detecting possible adulteration of high quality, expensive extra virgin olive oils with low-cost edible oils. Classical methods such as gas chromatography, liquid chromatography, Fourier transform infrared and nuclear magnetic resonance, mass spectrometry, and Raman spectroscopy have been widely applied to examine the authenticity of edible oils. De-spite of their high sensitivity and accuracy, these methods are significantly expensive for daily life testing, especially in resource-poor regions. Furthermore, they are time-consuming as samples have to be analyzed in dedicated laboratories. In this paper, we propose a compact, low-cost, port-able smartphone-based spectrometer for testing edible oil authenticity. Using simple laboratory op-tical components and a smartphone, we developed a compact spectrometer which can function in the wavelength range of 400–700 nm with the spectrum/pixel resolution of 0.334 nm / pixel. The images captured by the smartphone were converted into intensity distribution plots versus wave-length. As a proof of concept, the smartphone based spectrometer was utilized to measure the variations in fluorescent intensity of the mixed oils of expensive extra virgin olive oil and low-cost rice oil with different percentages. The results obtained the spectrometer were in good agreement with that from a laboratory spectrometer, thus, confirmed its adequate sensitivity and accuracy. Due to the cost effectiveness, the adequate sensitivity, and the portability, the smartphone based spectrometer can be applied in numerous applications such as in-field testing, lifestyle monitoring, and home diagnostics.

Publisher

Samara State National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3