Technique of detecting cloudy objects in multispectral images

Author:

Nikolaeva O.V.,

Abstract

A multistep algorithm to detect cloudy objects in multispectral images is presented. Clustering spatial pixels by the k-means method and applying spectral criteria of cloudy/clear sky to fragments of obtained clusters are carried out in each step of the algorithm. One cloudy object is found in one step. Results of testing the algorithm on images from a sensor HYPERION (199 non-zero spectral bands in a 425 nm – 2400 nm interval under high spatial resolution of 30 m) are given. Images with discontinuous cloud cover above different surfaces (ocean, vegetation, desert, town, snow) are considered. An alternative method, in which the same spectral criteria are applied to each pixel, is also used in testing. Cloud masks obtained by both algorithms are compared. Mean spectra of obtained cloudy objects are given. The presented algorithm finds 1-3 cloudy objects corresponding to the brightness distribution in RGB images. Using the alternative algorithm (without preliminary clustering) leads to detection errors on the cloud edges. Three quality parameters are offered. The ratio of dispersion of "cloudy" spectra to dispersion of "clear" spectra is found to be most informative. This ratio should be much less than 1 when using a good cloudy mask.

Publisher

Samara National Research University

Subject

Electrical and Electronic Engineering,Computer Science Applications,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3