Do maternal allocations towards offspring quality and quantity ameliorate the effects of predators on offspring survival?

Author:

Ugine Todd A.1ORCID,Mutz Jessie23ORCID,Underwood Nora2ORCID,Thaler Jennifer S.14ORCID

Affiliation:

1. Department of Entomology Cornell University Ithaca New York USA

2. Department of Biological Science Florida State University Tallahassee Florida USA

3. Department of Ecology & Evolutionary Biology University of Tennessee Knoxville Tennessee USA

4. Department of Ecology & Evolutionary Biology Cornell University Ithaca New York USA

Abstract

AbstractReproductive allocation is often balanced between the quantity and quality of offspring. Ecological stresses, like exposure to predators, can cause organisms to shift their allocations along this continuum. While the consequences of such plastic shifts for offspring performance are often untested, they are critical to understanding the potential long‐term benefits of manipulating predation risk as an agricultural pest management technique. Predation risk induces reductions in egg production and increases in nutritional condition due to maternal provisioning in Colorado potato beetles (Leptinotarsa decemlineata, CPB). Here, we tested whether reductions in density or increases in offspring condition, which may increase per‐capita larval survival, can compensate for the reduction in total egg production, especially when offspring are exposed to predators. In two field trials, we manipulated density and condition of larval CPB and measured survival through development to adulthood in field cages with and without predaceous stink bugs (Podisus maculiventris). As expected, cages with the higher initial larval densities had more larvae and adults surviving in the treatments without predators – about 30%–50% survival across densities. When predators were present, this relationship did not hold because of density‐dependent predation. Larval condition interacted with density and impacted larval survival in both trials albeit in different ways. In trial 1, unprovisioned beetles had higher survival at the higher densities; in trial 2, provisioned beetles had higher survival across densities. Synthesis and Applications: Overall, our test of the effects of predation risk via manipulations of larval density and condition revealed few net compensatory benefits to the prey of reduced density and higher condition. Benefits to the prey of shifts in allocation from the quantity to quality of offspring may depend on factors that influence the strength of density dependence, including predation intensity. Our results suggest a new strategy of taking advantage of the reductions in prey density due to non‐consumptive effects of predators as a pest management approach to protect plants.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3