Reducing environmentally mediated transmission to moderate impacts of an emerging wildlife disease

Author:

Hoyt Joseph R.1ORCID,Parise Katy L.2,DePue John E.3,Kaarakka Heather M.4,Redell Jennifer A.4,Scullon William H.5,O'Reskie Rich6,Foster Jeffrey T.2,Kilpatrick A. Marm7,Langwig Kate E.1ORCID,White J. Paul4

Affiliation:

1. Department of Biological Sciences Virginia Tech Blacksburg Virginia USA

2. Pathogen and Microbiome Institute Northern Arizona University Flagstaff Arizona USA

3. Michigan Department of Natural Resources Baraga Michigan USA

4. Wisconsin Department of Natural Resources Bureau of Natural Heritage Conservation Madison Wisconsin USA

5. Michigan Department of Natural Resources Norway Michigan USA

6. OXXION Consulting Corporation Eden Prairie Minnesota USA

7. Department of Ecology and Evolutionary Biology University of California Santa Cruz California USA

Abstract

Abstract Emerging infectious diseases have caused population declines and biodiversity loss. The ability of pathogens to survive in the environment, independent of their host, can exacerbate disease impacts and increase the likelihood of species extinction. Control of pathogens with environmental stages remains a significant challenge for conservation and effective management strategies are urgently needed. We examined the effectiveness of managing environmental exposure to reduce the impacts of an emerging infectious disease of bats, white‐nose syndrome (WNS). We used a chemical disinfectant, chlorine dioxide (ClO2), to experimentally reduce Pseudogymnoascus destructans, the fungal pathogen causing WNS, in the environment. We combined laboratory experiments with 3 years of field trials at four abandoned mines to determine whether ClO2 could effectively remove P. destructans from the environment, reduce host infection and limit population impacts. ClO2 was effective at killing P. destructans in vitro across multiple concentrations. In field settings, higher concentrations of ClO2 treatment were needed to sufficiently reduce viable P. destructans conidia in the environment. The reduction in the environmental reservoir at treatment sites resulted in lower fungal loads on bats compared to untreated control populations. Survival following treatment was also higher in little brown bats (Myotis lucifugus), and trended higher for tricolored bats (Perimyotis subflavus). Synthesis and applications. Our results highlight that targeted management of sources for environmental transmission can be an effective control strategy for wildlife disease. We found that successfully reducing pathogen in the environment decreased disease severity and increased survival, but required higher treatment exposure than was effective in laboratory experiments, and the effects varied among species. More broadly, our findings have implications for other emerging wildlife diseases with free‐living pathogen stages by highlighting how the degree of environmental contamination can have cascading impacts on hosts, presenting an opportunity for intervention.

Funder

Bat Conservation International

National Science Foundation

Nature Conservancy

Publisher

Wiley

Subject

Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3