Vegetation restoration in the coarse‐textured soil area is more conducive to the accumulation of Fe‐associated C

Author:

Dong Lingbo1,Li Jiajia1ORCID,Wang Defu1,Wang Su1,Hu Weifang2,Wu Jianzhao1,Liao Yang3,Yu Zhijing1,Wang Xi3,Yu Jinyuan1,Li Jiwei1,Shangguan Zhouping13,Deng Lei13ORCID

Affiliation:

1. State Key Laboratory for Soil Erosion and Dryland Farming on the Loess Plateau College of Soil and Water Conservation Science and Engineering (Institute of Soil and Water Conservation) Northwest A&F University Yangling Shaanxi China

2. Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences Guangzhou Guangdong China

3. Institute of Soil and Water Conservation, Chinese Academy of Science and Ministry of Water Resources Yangling Shaanxi China

Abstract

Abstract Vegetation restoration has an important effect on soil carbon (C) pool dynamics. Highly stable iron (Fe)‐associated C is an important component of the soil C pool and it plays a crucial role in the soil C cycle. However, a knowledge gap remains regarding the existence of Fe‐associated C variation during vegetation restoration. Herein, 0–60 cm soil samples of cropland, grassland, shrubland and forestland from three soil types (loam, loess and sandy soils) were collected to explore the response of Fe‐associated C to vegetation restoration. The results showed that soil Fe‐associated C proportion in the study area ranged from 2.2% to 26.3%. Surface soil (0–20 cm) Fe‐associated C content in loess and sandy soils increased following vegetation restoration, but decreased in loam soil. The accumulation efficiency of soil Fe‐associated C during vegetation restoration was higher in coarser soils. Moreover, the Fe‐associated C content and proportion of forestland with a higher soil organic matter (SOM) pool were the highest among the land use types. Vegetation restoration affects soil Fe‐associated C in two different ways: (1) increasing the SOM and dissolved organic C and improving the efficiency of C and Fe binding to promote the accumulation of Fe‐associated C; (2) decreasing the total soil Fe content, reducing the trivalent iron (Fe(III)) to bivalent iron (Fe(II)) and breaking the binding of C and Fe to decrease soil Fe‐associated C content, and these two different ways were found in all three soil types. Additionally, higher SOM accumulation efficiency and less root destruction caused by vegetation restoration in coarse soils resulted in a higher Fe‐associated C accumulation efficiency. Synthesis and applications. Vegetation and soil type strongly regulated the effects of vegetation restoration on soil Fe‐associated C. Forestlands may be the optimum vegetation type to provide soil C sequestration benefits, effectively increasing soil C pool and maximising Fe‐associated C content. This study has addressed the knowledge gap regarding the effects of vegetation restoration on soil Fe‐associated C and provides scientific basis for a better understanding of the soil C cycle and developing scientific vegetation restoration measures.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3