Dominant species establishment may influence invasion resistance more than phylogenetic or functional diversity

Author:

Ernst Adrienne R.123ORCID,Barak Rebecca S.3ORCID,Glasenhardt Mary‐Claire4,Kramer Andrea T.3ORCID,Larkin Daniel J.5ORCID,Marx Hannah E.6ORCID,Kamakura Renata Poulton7ORCID,Hipp Andrew L.8ORCID

Affiliation:

1. Department of Environmental Science and Studies Berry College Mount Berry Georgia USA

2. Plant Biology and Conservation Northwestern University Evanston Illinois USA

3. Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden Glencoe Illinois USA

4. Nelson Institute of Environmental Studies University of Wisconsin Madison Wisconsin USA

5. Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota St. Paul Minnesota USA

6. Department of Biology & Museum of Southwestern Biology University of New Mexico Albuquerque New Mexico USA

7. Nicholas School of the Environment Duke University Durham North Carolina USA

8. Center for Tree Science The Morton Arboretum Lisle Illinois USA

Abstract

Abstract Phylogenetic and functional diversity are theorised to increase invasion resistance. Experimentally testing whether plant communities higher in these components of diversity are less invasible is an important step for guiding restoration designs. To investigate how phylogenetic and functional diversity of vegetation affect invasion resistance in a restoration setting, we used experimental prairie restoration plots. The experiment crossed three levels of phylogenetic diversity with two levels of functional diversity while species richness was held constant. We allowed invaders to colonise plots; these included native species from neighbouring plots and non‐native invasive species from a surrounding old field. We tested if invader biomass was influenced by phylogenetic and functional diversity, and phylogenetic and hierarchical trait distances between invaders and planted species. We binned each invader into three categories: native species from neighbouring experimental plots (site‐specific invaders), native species not part of the experimental species pool (native invaders) or non‐native species (non‐native invaders). Counter to expectation, both non‐native and native invaders became more abundant in more phylogenetically diverse plots. However, plots with higher abundance of planted Asteraceae, a dominant family of the tallgrass prairie, had lower invader biomass for both native and non‐native invaders. We also found that hierarchical trait differences shaped invasion. The species that became most abundant were non‐native invaders that were taller, and native invaders with low specific leaf area relative to planted species. Site‐specific invaders were not influenced by any plot‐level diversity metrics tested. Synthesis and application: Our results suggest that greater phylogenetic diversity may lower resistance to invasion. This effect may be due to more even but sparser niche packing in high‐diversity plots, associated with greater availability of unsaturated niche space for colonisation. However, trait composition fostered invasion resistance in two ways in our study. First, establishment of native species with strongly dominant traits may confer invasion resistance. Second, species mixes that optimise trait differences between planted vegetation and likely invaders may enhance invasion‐resistance.

Funder

Division of Biological Infrastructure

Division of Environmental Biology

Division of Graduate Education

Garden Club of America

Publisher

Wiley

Subject

Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3