Pesticide risk during commercial apple pollination is greater for honeybees than other managed and wild bees

Author:

Mueller Tobias G.1ORCID,Baert Nicolas1ORCID,Muñiz Paige A.1ORCID,Sossa David E.1ORCID,Danforth Bryan N.1ORCID,McArt Scott H.1ORCID

Affiliation:

1. Department of Entomology Cornell University Ithaca New York USA

Abstract

Abstract Most pesticide research has focussed on risk to managed honeybees, but other managed and wild bees are also exposed to pesticides. Critically, we know little about the magnitude and sources of risk to honeybees compared with other bees during crop pollination. To compare pesticide exposure and risk across wild and managed bees, we sampled the main bee groups present during bloom in 20 apple orchards, including managed honeybees (Apis mellifera), managed bumblebee workers (Bombus impatiens), wild mining bees (Andrena spp. and Andrena [Melandrena] spp.), bumblebee foundress queens (Bombus impatiens) and eastern carpenter bees (Xylocopa virginica). We screened all bees for 92 pesticides and computed a Risk Quotient using available toxicity data (honeybee LD50s), adjusting for differences in toxicity known to scale with body mass. To gain insight into exposure origin, we compared residues in bees to those in focal orchard apple and dandelion flowers. Nearly all bee samples contained pesticides (95%), with the average contamination level ranging from 7.1 ± 2.8 parts per billion (ppb) in B. impatiens workers to 388.4 ± 146.2 ppb in Andrena. Exposure profiles were similar for all bees except A. mellifera, whose unique exposure profile included high levels of the neonicotinoid insecticide thiamethoxam. All bee groups except wild B. impatiens queens had at least one sample exceeding a US Environmental Protection Agency or European Food Safety Authority exposure level of concern. Apis mellifera experienced significantly greater risk than other bee groups, with 63% and 81% of samples exceeding an acute or chronic exposure level of concern, respectively. Risk to honeybees was driven primarily by high thiamethoxam levels not found in focal orchard flowers and likely originating outside the orchard. Synthesis and applications: We find that pesticide exposure and risk differ between honeybees and other managed and wild bees during apple pollination. Furthermore, pesticide exposure is a landscape‐scale phenomenon and therefore measures to reduce exposure must consider the surroundings beyond focal farms. Limiting orchard sprays, while reducing on‐farm exposures, will not protect far‐foraging bees from off‐farm exposures such as thiamethoxam, which we hypothesize is coming from nearby seed‐treated corn fields planted during apple bloom.

Funder

National Science Foundation

Farm Service Agency

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3