Ecosystem feedbacks constrain the effect of day‐to‐day weather variability on land–atmosphere carbon exchange

Author:

Rastetter Edward B.1ORCID,Griffin Kevin L.234ORCID,Kwiatkowski Bonnie L.1ORCID,Kling George W.5ORCID

Affiliation:

1. The Ecosystems Center, Marine Biological Lab Woods Hole Massachusetts USA

2. Department of Earth and Environmental Sciences Columbia University Palisades New York USA

3. Department of Ecology, Evolution and Environmental Biology Columbia University New York New York USA

4. Division of Biology and Paleo Environment, Lamont‐Doherty Earth Observatory Columbia University Palisades New York USA

5. Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan USA

Abstract

AbstractWhole‐ecosystem interactions and feedbacks constrain ecosystem responses to environmental change. The effects of these constraints on responses to climate trends and extreme weather events have been well studied. Here we examine how these constraints respond to changes in day‐to‐day weather variability without changing the long‐term mean weather. Although environmental variability is recognized as a critical factor affecting ecological function, the effects of climate change on day‐to‐day weather variability and the resultant impacts on ecosystem function are still poorly understood. Changes in weather variability can alter the mean rates of individual ecological processes because many processes respond non‐linearly to environmental drivers. We assessed how these individual‐process responses to changes in day‐to‐day weather variability interact with one another at an ecosystem level. We examine responses of arctic tundra to changes in weather variability using stochastic simulations of daily temperature, precipitation, and light to drive a biogeochemical model. Changes in weather variability altered ecosystem carbon, nitrogen, and phosphorus stocks and cycling rates in our model. However, responses of some processes (e.g., respiration) were inconsistent with expectations because ecosystem feedbacks can moderate, or even reverse, direct process responses to weather variability. More weather variability led to greater carbon losses from land to atmosphere; less variability led to higher carbon sequestration on land. The magnitude of modeled ecosystem response to weather variability was comparable to that predicted for the effects of climate mean trends by the end of the century.

Funder

Division of Environmental Biology

Division of Polar Programs

National Science Foundation

Publisher

Wiley

Subject

General Environmental Science,Ecology,Environmental Chemistry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3