Multiclass seismic damage detection of buildings using quantum convolutional neural network

Author:

Bhatta Sanjeev1,Dang Ji1

Affiliation:

1. Graduate School of Civil and Environmental Engineering Saitama University Saitama Japan

Abstract

AbstractThe traditional visual inspection technique for damage assessment of buildings immediately after an earthquake can be time‐consuming, labor‐intensive, and risky. Numerous studies have been carried out using deep learning techniques, particularly convolutional neural network (CNN), to evaluate the damage to building structures after an earthquake using buildings’ damage images. Quantum computing, on the other hand, is a computing environment that can exploit superposition and entanglement, which are not available in classical computing environments, to achieve higher performance using parallelism between qubits. This paper presents a novel quantum CNN (QCNN) approach to detect damage to reinforced concrete (RC) buildings from images after the earthquake. The QCNN model is developed and trained using the RC building damaged images collected from past earthquakes. The performance of this model is evaluated based on the multiclass damage detection ability of the real‐world RC building damaged images collected from the recent earthquake in Turkey in February 2023. Furthermore, the seismic damage detection accuracy obtained from the QCNN model is compared with various CNN architecture results.

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Building and Construction

Reference80 articles.

1. A dynamic ensemble learning algorithm for neural networks;Alam K. M. R.;Neural Computing and Applications,2020

2. Implementing magnetic resonance imaging brain disorder classification via AlexNet–quantum learning;Alsharabi N.;Mathematics,2023

3. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions;Alzubaidi L.;Journal of Big Data,2021

4. Arthur D.(2022).A hybrid quantum‐classical neural network architecture for binary classification. arXiv preprint arXiv:2201.01820.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3