Quantum‐enhanced machine learning technique for rapid post‐earthquake assessment of building safety

Author:

Bhatta Sanjeev1,Dang Ji1

Affiliation:

1. Graduate School of Civil and Environmental Engineering Saitama University Saitama Japan

Abstract

AbstractFast, accurate damage assessment of numerous buildings for large areas is vital for saving lives, enhancing decision‐making, and expediting recovery, thereby increasing urban resilience. The traditional methods, relying on expert mobilization, are slow and unsafe. Recent advances in machine learning (ML) have improved assessments; however, quantum‐enhanced ML (QML), a rapidly advancing field, offers greater advantages over classical ML (CML) for large‐scale data, enhancing the speed and accuracy of damage assessments. This study explores the viability of leveraging QML to evaluate the safety of reinforced concrete buildings after earthquakes, focusing on classification accuracy only. A QML algorithm is trained using simulation datasets and tested on real‐world damaged datasets, with its performance compared to various CML algorithms. The classification results demonstrate the potential of QML to revolutionize seismic damage assessments, offering a promising direction for future research and practical applications.

Publisher

Wiley

Reference61 articles.

1. Rebuilding earthquake struck Nepal through community engagement;Adhikari B.;Frontiers in Public Health,2016

2. Aichele Figueiroa D. A.(2023).Use of quantum algorithms for classification of rolling bearing damage[Doctoral dissertation Universidade Federal de Pernambuco Recife Brazil].https://repositorio.ufpe.br/handle/123456789/54969

3. Akter M. S. Shahriar H. Ahamed S. I. Gupta K. D. Rahman M. Mohamed A. Rahman M. Rahman A. &Wu F.(2023 June).Case study‐based approach of quantum machine learning in cybersecurity: Quantum support vector machine for malware classification and protection. arXiv e‐prints arXiv‐2306.https://arxiv.org/pdf/2306.00284

4. A dynamic ensemble learning algorithm for neural networks

5. Aleksandrowicz G. Alexander T. Barkoutsos P. Bello L. Ben‐Haim Y. Bucher D. Cabrera‐Hernández F. J. Carballo‐Franquis J. Chen A. Chen C. F. &Chow J. M.(2019).Qiskit: An open‐source framework for quantum computing.https://zenodo.org/records/2562111

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3