Affiliation:
1. Sonny Astani Department of Civil and Environmental Engineering University of Southern California California USA
2. Department of Civil Engineering and Engineering Mechanics Columbia University New York USA
3. Fire Department of the City of New York New York USA
Abstract
AbstractThe integration of data‐driven models such as neural networks for high‐consequence decision making has been largely hindered by their lack of predictive power away from training data and their inability to quantify uncertainties often prevalent in engineering applications. This article presents an ensembling method with function‐space regularization, which allows to integrate prior information about the function of interest, thus improving generalization performance, while enabling quantification of aleatory and epistemic uncertainties. This framework is applied to build a probabilistic ambulance travel time predictor, leveraging historical ambulance data provided by the Fire Department of New York City. Results show that the integration of a non‐Gaussian likelihood and prior information from a road network analysis yields appropriate probabilistic predictions of travel times, which could be further leveraged for emergency medical service (EMS) decision making.
Subject
Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Building and Construction
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献