Estimating travel time in the Helsinki region utilising sequential Bayesian inference

Author:

Zargari Shahriar Afandizadeh1ORCID,Khorshidi Navid2ORCID,Mirzahossein Hamid3ORCID,Shakoori Samim2ORCID,Jin Xia4ORCID

Affiliation:

1. Professor, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran

2. Researcher, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran

3. Associate Professor, Department of Civil–Transportation Planning, Imam Khomeini International University, Qazvin, Iran (corresponding author: )

4. Professor, Department of Civil and Environmental Engineering, Florida International University, Miami, FL, USA

Abstract

This paper explores application of Bayesian inference (BI) to dynamic travel time estimation in the Helsinki region. Accurate travel time prediction is crucial in a wide range of fields, including departure time and routing. Limited real-time data challenge modelling accuracy. To address this, this paper utilises BI, particularly sequential Bayesian inference (SBI) for evolving observed values. Incorporating 2018 real-time data and 2015 information as prior knowledge, travel time distribution will be updated. Validation yields a 4.0% mean absolute error between the updated 2018 distribution and actual travel time. Also, using the 2015 posterior distribution as prior by way of SBI yields a 4.6% mean absolute error. Results highlight that SBI is an effective tool for updating distributions. This paper underscores potential of BI in addressing data scarcity and enhancing accuracy of transportation models. By supplying precise travel time estimates, this approach benefits congestion relief and travel planning. With evolving travel time data, BI promises to advance transportation modelling.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3