Climate change alters global invasion vulnerability among ecoregions

Author:

Hubbard Justin A. G.1ORCID,Drake D. Andrew R.2,Mandrak Nicholas E.1ORCID

Affiliation:

1. Department of Physical and Environmental Sciences University of Toronto Scarborough Scarborough Ontario Canada

2. Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada Burlington Ontario Canada

Abstract

AbstractAimWe assess climate similarity among global freshwater and terrestrial ecoregions under historical and future climate scenarios to determine where climate change will impact the climate filter of invasion process.LocationGlobal.MethodsWe used the Climatch algorithm to conduct a climate‐match analysis to quantify the climate similarity between freshwater and terrestrial ecoregions of the world. Climate match was modelled between all freshwater and terrestrial ecoregions. The analysis was conducted under historical climates and projected climates of 2081–2100 (2090) under three shared socioeconomic pathways SSP2‐4.5, SSP3‐7.0, SSP5‐8.5. Climate matches of each ecoregion were presented as mean climate match to all other ecoregions of the same set. Friedman's non‐parametric rank sum two‐way analysis of variance with repeated measures was used to examine differences in mean climate match between climate scenarios.ResultsMean climate match of ecoregions was projected to increase significantly with small effect sizes for freshwater ecoregions (recipients: 0.132; sources: 0.105), and moderate and small effect sizes for terrestrial ecoregions (recipients: 0.330; sources: 0.259). Climate change was predicted to increase mean climate match in North America and Eurasia, particularly in the Arctic by 2090 under each SSP. Ecoregions in central Africa and South America were predicted to have reduced mean climate match. Ecoregions within larger countries (e.g. Australia, Canada, USA) showed variation in mean climate match.Main ConclusionClimate change projections of bioclimatic predictors of species invasions were shown to increase in homogeneity under higher emissions scenarios. Furthermore, we demonstrate how climate change will provide opportunities for invasive species transported among ecoregions to survive under new conditions and identify where the climate filter of the invasion process will be most affected. Findings can be used to inform conservation actions for mitigating the impacts of introduced species by identifying potential risky source regions of future freshwater and terrestrial invasions under climate change.

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3