European oak metabolites shape digestion and fitness of the herbivore Tortrix viridana

Author:

Bertić Marko1ORCID,Orgel Franziska2ORCID,Gschwendtner Silvia3ORCID,Schloter Michael3ORCID,Moritz Franco4,Schmitt‐Kopplin Philippe4ORCID,Zimmer Ina1ORCID,Fladung Matthias2ORCID,Schnitzler Jörg‐Peter1ORCID,Schroeder Hilke2ORCID,Ghirardo Andrea1ORCID

Affiliation:

1. Research Unit Environmental Simulation (EUS) Helmholtz Zentrum München Neuherberg Germany

2. Thünen‐Institute of Forest Genetics Grosshansdorf Germany

3. Research Unit for Comparative Microbiome Analysis Helmholtz Zentrum München Neuherberg Germany

4. Research Unit Analytical BioGeoChemistry Helmholtz Zentrum München Neuherberg Germany

Abstract

Abstract Plants harbour a wide range of leaf‐feeding insects whose survival and fitness are influenced by both energy‐rich molecules and phytochemicals in the host foliage. Yet, how leaf host chemical diversity and insect microbiota—key factors in ecological and physiological processes—impact insect nutrition and fitness are still poorly understood. To study the effects of leaf metabolic composition on insect herbivory resistance and performance, we fed the larvae of the specialist herbivory Tortrix viridana with leaves of susceptible and resistant Quercus robur trees that are characterized by contrasting metabolomes. We analysed the larval performance and mortality, the metabolomes in plant leaves, and in the insects' saliva and faeces by non‐targeted metabolomics. Using chemometrics, mass difference network analysis and metabarcoding, we show the metabolome changes and chemical reactions associated with the different diets as well as their impact on insect fitness and gut microbiota. In the saliva and faeces of larvae, plant secondary metabolites (e.g. flavonoids) persisted more the insect digestion while compounds from primary metabolism were more depleted. In addition, metabolic reactions within the larvae indicated different degradation pathways used on the two plant metabolic types (syn. metabotypes), including sulfation and sulfonation. We show that feeding insects with resistant oak leaves, enriched in secondary metabolites and depleted in primary metabolites, impaired insect performance and mortality. Although the insects' gut microbiota was slightly different upon the contrasting diets, overall, it was fairly stable. Despite the impact of host chemicals on herbivores, larvae were generally highly efficient in nutrient assimilation (feed conversion ratios of 3.3–3.6) and able to minimize plant defences (78% of secondary metabolites were converted, broken down or sequestrated). The comparison of the oak metabotypes showed how the foliar composition of resistant oaks affected insect fitness by influencing their digestion. Herbivores feeding on resistant oaks were less efficient due to their lower ability to metabolize and detoxify higher levels of host phytochemicals, whereas those on susceptible oaks were more efficient as they could degrade the host metabolome. This study highlights the importance of the oak leaf chemical composition to insect digestion and fitness of a specialized herbivore. Read the free Plain Language Summary for this article on the Journal blog.

Funder

Department of Forestry and Natural Resources, Purdue University

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3